QUANTUM KOSTKA AND THE RANK ONE PROBLEM FOR \mathfrak{sl}_{2m}

NATALIE HOBSON

JMM Abstract

Vector bundles of conformal blocks on $\overline{M}_{g,n}$, the moduli space of stable n-pointed curves of genus g, are determined by a simple Lie algebra \mathfrak{g}, a positive integer ℓ, and an n-tuple $\vec{\lambda}$ of dominant integral weights for \mathfrak{g} at level ℓ. On $\overline{M}_{0,n}$ the bundles are globally generated, and their first Chern classes are base point free. The ranks of the bundles, when $\mathfrak{g} = \mathfrak{sl}_{r+1}$, can be computed using Schubert calculus. In this talk, using quantum Kostka and other tools, I classify ranks of \mathfrak{sl}_{2m} bundles with so-called rectangular weights. Using similar techniques I show that the subcone of the nef cone spanned by the infinite family of first Chern classes of bundles of rank one is actually polyhedral, the convex hull of a finite number of extremal rays.

References

[1] V. Alexeev, A. Gibney, and D. Swinarski, Conformal Blocks Divisors on $\overline{M}_{0,n}$ from \mathfrak{sl}_2.

Date: February 21, 2016.